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Table III. 6Li NOE of 1 in Diethyl Ether: % 6Li NMR 
Enhancement 

proton 
irrad 

3 s 
10s 

CH3 

12 

H(syn) 

25 
28 

H(anti) 
less assoc 

29.5 
39 

H(anti) 
more assoc 

29.5 
39 

sured unless the line-shape calculation takes account of both 
processes. Further, N M R studies of allyllithium compounds must 
be carried out as a function of RLi concentration, ligand, con­
centration, and temperature, the latter as low as is consistent with 
good N M R resolution. 

This work emphasizes the utility of N O E measurements to 
determine the relative positions of hydrogens relative to lithium. 
Further, we establish the necessity of obtaining N M R data at as 
low a temperature as is practical in order to minimize the effects 
of exchange processes. 

Experimental Section 
NMR spectroscopy was carried out using Bruker equipment, AM-500 

for protons and MSL 300 for 6Li and 13C. Relevant instrumental pa­
rameters are listed in Table II. 

NOE effects were measured for 6Li NMR spectra by selectively ir­
radiating hydrogen resonances. In these experiments, first both proton 
and lithium NMR spectra were recorded. A proton frequency list was 
then created including the following resonances: methyl, CH(syn), CH-
(anti) both species, and a frequency approximately 10 ppm removed from 
all resonances, selected as null. 

In a typical accumulation the proton resonance was irradiated for 3 
s, then the decoupler turned off and the 6Li spectrum recorded (see Table 
III). These results establish the relative proximities of 6Li and different 
protons. Because of a slow but significant interspecie exchange rate, the 
above results are probably somewhat attenuated. 

Tetrakis(2-methylallyl)tin. The general procedure follows that of 
Fishwich and Wallbridge.17 A 2-L three-neck flask fitted with an ov­
erhead stirrer, a reflux condenser, and an addition funnel was flame-dried 
while flushing with argon. Magnesium (25 g) was added along with a 

(17) Fishwick, M.; Wallbridge, M. G. H. J. Organomet. Chem. 1970, 25, 
69. 

In modern analytical chemistry, one of the fastest growing areas 
for practical applications is the use of multivariate calibration for 
multicomponent quantitative analysis.1 Multivariate methods 
are necessary in order to utilize the tremendous amounts of data 

'Present address: Eastman Chemicals Research Labs, P.O. Box 1972, 
Building 95A, Lincoln, Rd., Kingsport, TN 37662. 

+ Current address: Swedish National Agricultural Laboratory, Box 5097, 
900 05 Umea, Sweden. 

•Corresponding author. 

crystal of iodine and 25 mL of THF. Methallyl chloride (10 g) was 
added and the solution stirred without further addition until the yel­
low/brown color of the iodine solution was dissipated. Once this occurred 
the solution was cooled with ice, and a solution of allyl chloride (85 g) 
and tin tetrachloride (25 mL, 55.7 g, 0.21 M) in hexane (200 mL) was 
added dropwise. After approximately 15 mL an additional liter of THF 
was added to dissolve the Grignard reagent. After complete addition the 
mixture was stirred at room temperature overnight and then heated to 
reflux for 0.5 h. After cooling to room temperature this reaction mixture 
was poured into an ice/ammonium chloride slurry and the organic layer 
extracted with hexane. The combined organic layers were dried over 
MgSO4 and filtered; then the solvent was removed in vacuo, yielding 36 
g of the title compound, bp 134 0C (4 Torr), 50% yield; proton NMR 
(250 MHz, CDCl3) S 1.71 (s, 3 H), 1.91 (s, 2 H), 4.54, 5.24. 

2-Methylallyllithium.18 All of the following procedures were per­
formed in a Vacuum-Atmospheres inert atmosphere box, with argon. 
Glassware was oven-dried at 130 0C and cooled in vacuo. 

Freshly distilled and degassed tetrakis(2-methylallyl)tin (1.7 g) was 
weighed into a 150-mL Schlenk flask. Diethyl ether (25 mL, freshly 
vacuum transferred from Na/K benzophenone ketyl) was added and 
stirring begun. «-Butyllithium-6ii (4 mL, 2.6 M in hexane) was added 
via syringe over 15 min. The yellow solution was stirred 1 h. The diethyl 
ether was removed in vacuo (in the glove box). A yellow paste formed 
together with a layer of dibutyldiallyltin. Three times pentane (10 mL) 
was added; the phases were mixed for 30 min and the pentane was poured 
off. The viscous allyllithium etherate was evacuated for a short period 
to remove pentane and then dissolved in ether (5 mL). This reaction is 
essentially quantitative. An NMR sample of this solution showed no 
impurities. 
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(18) Seyferth, D.; Weiner, M. A. J. Org. Chem. 1961, 26, 4797. 

that can be collected with modern analytical instruments and 
laboratory computers, and because fast, inexpensive calibration 
methods can largely replace slower, more expensive direct de­
termination methods. A good example of this is the use of 
near-infrared reflectance spectroscopy to routinely measure the 
protein content of wheat, while the Kjeldahl nitrogen analysis is 

(1) Beebe, K. R.; Kowalski, B. R. Anal. Chem. 1987, 59, 1007A-1017A. 

Multicomponent Quantitative Analysis Using Second-Order 
Nonbilinear Data: Theory and Simulations 
Bruce E. Wilson, 1 Walter Lindbergh and Bruce R. Kowalski* 

Contribution from the Laboratory for Chemometrics, Department of Chemistry, BG-IO, 
University of Washington, Seattle, Washington 98195. Received July 22, 1988 

Abstract: The application of rank annihilation to a class of instruments generating data which can be classified as second-order 
nonbilinear is described. This method permits determining the concentration of an analyte of interest even in the presence 
of spectral interferents unknown and unaccounted for during calibration. The primary difficulty in applying rank annihilation 
to nonbilinear data is that multiple, different concentration estimates are obtained; it is shown that, for two-dimensional mass 
spectrometry and absolute value mode two-dimensional nuclear magnetic resonance spectroscopy, the correct concentration 
estimate should be the smallest of those obtained. The method provides a back-estimate of the calibration matrix, which can 
be used as an indication of the accuracy of the resulting concentration estimate, as well as a diagnostic for the presence of 
matrix effects between the calibration and unknown samples. In this paper, the theory and motivation for rank annihilation 
is presented, and the application to nonbilinear data is presented using computer simulations and a test system consisting of 
2D /-coupled NMR spectra (COSY) of six sugars in D2O. 

0002-7863/89/1511-3797501.50/0 © 1989 American Chemical Society 



3798 J. Am. Chem. Soc, Vol. Ill, No. 11, 1989 Wilson et al. 

necessary only to determine the protein content for calibration 
samples.2,3 

The simplest type of calibration, so-called univariate calibration, 
regresses a single measured property, such as the sample's ab-
sorbance at a single wavelength, against one or more standards 
of known analyte concentrations.4,5 Such a method has the 
advantage that it is comparatively easy to understand and 
implement—most modern scientific calculators have this capability 
built in. However, such a calibration method is extremely limited 
in practice, because it assumes that the measured response is 
influenced solely by the analyte of interest. This requirement is 
termed the unique signal requirement, and there is, unfortunately, 
no a priori method of checking its validity for a given sample.6 

Further, even if the unique signal requirement is met, it is not 
possible to use a univariate calibration model to determine the 
concentration of more than one chemical component. 

By contrast, when using multivariate methods, such as meas­
uring the absorbance at several wavelengths and using principal 
components regression (PCR) to correlate the absorbances with 
the concentrations of the analyte(s) of interest, it is possible to 
simultaneously determine several chemical components, as well 
as components for which no unique signal channel exists.1,4,s It 
is also possible to use residual analysis in a multivariate calibration 
model to test whether the unknown sample contains chemical 
components not present in the calibration samples.4,7,8 These 
additional components are called spectral interferents, and they 
render the usual univariate and multivariate models invalid for 
predicting analyte concentrations in the unknown sample.6 At 
least for multivariate methods, it is generally possible to detect 
spectral interferents and thereby know that the model is invalid; 
for univariate methods the same facts which preclude verifying 
the unique signal requirement preclude the detection of spectral 
interferents.6 

Certain multivariate methods, notably curve resolution, can 
sometimes be used to estimate the concentrations of one or two 
analytes when an unknown spectral interfereht is present, but these 
methods generally require assumptions which cannot be verified 
a priori. For many of these methods, the principal requirement 
is that one of the signal channels must respond solely to the analyte 
of interest.9-1' Specifically which channel is unique for the analyte 
of interest does not need to be known, only that such a channel 
exists. However, as for univariate methods, it is not possible to 
verify that this assumption holds.6 

One solution to the problem of spectral interferents was de­
veloped by Ho and co-workers,12 a calibration method which they 
called rank annihilation factor analysis and which is applicable 
only to data from certain types of analytical instruments. Ex­
amples of data to which rank annihilation may be applied include 
those from chromatography with a multichannel (wavelength) 
detector (e.g., LC-UV, GC-MS) and fluorescence excitation-
emission matrices. The important characteristics of these in­
struments are that (a) each sample yields a matrix of data (as 
opposed to a single scalar or a vector of data), termed the response 
matrix, and (b) the rank of a response matrix for a pure chemical 
component is one, in the absence of noise. Methods and the data 

(2) Naes, T.; Martens, H. J. Chemometrics 1988, 2, 155-167. 
(3) Williams, P.f Norris, K., Eds. Near-infrared Technology in the Ag­

ricultural and Food Industries; American Association of Cereal Chemists: 
St. Paul, MN, 1987. 
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1985. 
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(6) Osten, D. W.; Kowalski, B. R. Anal. Chem. 1985, 57, 908-917. 
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(8) Lorber, A.; Veltkamp, D.; Kowalski, B. R., Outliers Analysis in 
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(9) Caruna, R. A.; Searle, R. B.; Heller, T.; Shupack, S. I. Anal. Chem. 

1986,58, 1162-1167. 
(10) Kawata, S.; Komeda, H.; Sasaki, K.; Minima, S. Appl. Spectrosc. 

1985, 39, 610-614. 
(11) Malinowski, E. R. Anal. Chim. Acta 1982, 134, 129-137. 
(12) Ho, C-N.; Christian, G. D.; Davidson, E. R. Anal. Chem. 1978, 50, 

1108-1113. 

thereby produced which meet these two requirements are classified 
as second-order bilinear.12,13 To date, rank annihilation methods 
have been successfully applied to fluorescence excitation-emis­
sion,12,14,15 thin layer chromatography with multichannel UV 
detection,16 and LC-UV.17"19 

Furthermore, using an advanced formulation of rank 
annihilation—the generalized rank annihilation method 
(GRAM)—it is possible to quantitate for multiple analytes using 
a single calibration sample,20 even in the presence of unknown 
spectral interferents. GRAM is also more powerful in that it 
provides the pure component profiles (e.g., UV spectra and elution 
profiles in LC-UV) as a consequence of solving for the concen­
tration estimates, which is useful for comparison against library 
spectra as well as for qualitative analysis. 

The successes in applying rank annihilation to real chemical 
problems are most remarkable in that quantitation for the analytes 
of interest in the presence of unknown spectral interferents is 
possible, but without the requirement of having a unique signal 
channel. Unfortunately, the requirements of rank annihilation 
have restricted the analytical instruments to which it may be 
applied. In particular, it has not been possible to apply rank 
annihilation to two-dimensional mass spectrometry (MS/MS) or 
two-dimensional nuclear magnetic resonance (2D NMR). These 
instruments are both capable of generating a matrix of data for 
each sample, but the rank of one of these pure component response 
matrices is generally substantially larger than one, and so MS/MS 
and 2D NMR (and the data they generate) are classified as 
second-order nonbilinear. 

In this paper it will be demonstrated that rank annihilation 
based methods can be used with nonbilinear data to solve the 
background problem and estimate single analyte concentrations, 
at least under certain circumstances. However, the advantages 
GRAM offers for multiple analyte quantitation from a single 
calibration sample and for estimating the pure component response 
matrices from that single calibration sample are lost. 

Theory 

The terminology for classifying types of instruments and the 
data they produce is as suggested by Sanchez and Kowalski21,22 

and is based upon the order of the tensor that can be used to 
represent the data generated by the instrument for a single sample. 
A pH meter and a single wavelength spectrophotometer both 
generate a single datum for each sample, and so are classified as 
zeroth-order instruments. A spectrometer or sensor array23 

generates a vector of data (e.g., absorbance at multiple wave­
lengths) which can be represented as a first-order tensor, and so 
are both first-order instruments. Note that first order is also 
sometimes used to refer to instruments which have a linear re­
sponse with concentration (i.e., a first-order polynomial); in this 
paper the term first order will always refer to instruments which 
produce a vector of data per sample or to the data itself. Hy­
phenated chromatographic methods, such as LC-UV, and other 
so-called two-dimensional experiments such as 2D NMR and 
MS/MS generate a matrix of data per sample and so are sec­
ond-order instruments. However, not all hyphenated techniques 
are second order; for example, plasma emission spectroscopy 

(13) Hirschfeld, T. Anal. Chem. 1980, 52, 297A-312A. 
(14) Ho, C-N.; Christian, G. D.; Davidson, E. R. Anal. Chem. 1980, 52, 
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(19) Ramos, L. S.; Sanchez, E.; Kowalski, B. R. J. Chromatogr. 1987, 385, 
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coupled with mass spectrometry to form ICP-AES-MS is a 
first-order method because one does not measure a mass spectrum 
of a specific atomic emission line or vice versa. In LC-UV, by 
comparison, one does measure the UV spectrum at a specific 
chromatographic retention time.13 

Within second order, a distinction is made between bilinear and 
nonbilinear data, based upon the mathematical rank of the re­
sponse matrix for a pure component. For a bilinear second-order 
instrument, such as hyphenated chromatography, the rank of a 
pure component response matrix is unity. For a nonbilinear 
second-order instrument, such as MS/MS or most common 2D 
NMR experiments (e.g., COSY, NOESY), the rank of a pure 
component response matrix is larger than one. Another way of 
expressing the difference between bilinear and nonbilinear in­
struments is that for a bilinear instrument, the response function 
R(X11X2) is separable into two independent response functions, 
R1(X1)R2(^2), each a function of one variable only. For a non­
bilinear instrument, R(X1 ,x2) is not separable. In chemical terms, 
in LC-UV the elution profile and the UV spectra are independent 
of one another, but in MS/ MS the daughter spectrum is a function 
of the parent ion mass. 

For a second-order bilinear instrument, the m rows by n columns 
response matrix N* for a pure chemical component k can be 
represented as 

N* = X ^ N V * 1 + E (1) 

where \k and yk are column vectors which are the pure component 
response in the row and column spaces, c<.N is the scalar con­
centration in some appropriate set of units so that \\xk\\ = \\yk\\ 
= 1, where ||-|| represents the Euclidian vector norm, E represents 
unmodelled experimental error, and T indicates vector (or matrix) 
transposition. To the extent that E can be neglected, N4 has rank 
one. In the case of LC-UV, x*. would be the pure component UV 
spectrum and yk would be the pure component chromatographic 
profile. Note also that the matrix formed from the outer product 
of two vectors, e.g., x ^ T , is sometimes referred to as a diad. 

If M is a bilinear response matrix for a mixture containing K 
chemical components then, assuming linear superposition of 
spectra, the bilinear expansion of M is given by 

* ck,M 

M = E N, = XCMYT (2) 
*=1 c/t,N 

where ctiM and ck N are the concentrations of the /cth chemical 
component in the mixture and calibration samples, respectively, 
the N* are the pure component response matrices, X is a matrix 
whose columns are the pure component row space responses (e.g., 
spectra), CM is a diagonal matrix whose elements are the con­
centrations in appropriate units so that the columns of X and Y 
are normalized, and Y is a matrix whose columns are the pure 
component column space responses (e.g., chromatographic pro­
files). Note that the columns of X and Y are not necessarily 
orthogonal, as would be the case for the singular value decom­
position (SVD) of M. However, if the responses of the K com­
ponents are linearly independent, then the rank of M is nonetheless 
equal to K. 

The original rank annihilation method12 is based on considering 
a difference matrix B of the form 

B(a) = M - aNp (3) 

where Np is the response matrix of the analyte of interest, des­
ignated as component p, where p £ {1 ...K], and a is a nonnegative 
scalar constant. Note that when a is equal to the ratio a0 = 
CP,M/CP,N' t n e n t n e rank of B is reduced by one unit: 

CPM * CP,M 
B(«0) = M Np = E N, (4) 

cp,N *=1 cp,N 
k*p 

The bilinear expansion for B(a0) contains K - 1 linearly inde­
pendent terms, and its rank is therefore equal to K - 1. 

As originally proposed by Ho and co-workers,12 the imple­
mentation of the concept embodied in eq 3 and 4 involves finding 

the minimum in the eigenvalues of B as a function of a. However, 
this method is iterative and computationally intensive, despite later 
algorithmic improvements.14,15 Lorber24,25 then noted that min­
imizing the rank of B in eq 3 is equivalent to solving a generalized 
eigenproblem of the form 

Mz = NpzX (5) 

where X is the eigenvalue and z is the eigenvector. Because Np 

is a rank one matrix, there is exactly one nonzero eigenvalue, which 
is equal to the concentration ratio X = a0 = cPiU/cpfi. Therefore, 
the noniterative rank annihilation solution to the calibration 
problem for the bilinear second-order case is found by solving the 
corresponding eigenvalue-eigenvector problem. 

An interesting point, noted by Sanchez and Kowalski21 and 
related to later work by Lorber,26 is that z is also chemically 
significant; it is the portion of yp which is orthogonal to the 
remaining yk, an assertion which can be verified by noting that 
the solution to the eigenproblem is unique. In the nomenclature 
of Sanchez and Kowalski's work,21,22 z is the contravariant of yp; 
in Lorber's nomenclature z is the net analyte signal of yp. 

However, rank annihilation of the form in eq 5 is limited be­
cause Np is the response of the pure analyte of interest. A more 
general formulation of rank annihilation, one which does not 
require pure component response matrices for calibration, was 
derived by Sanchez and Kowalski20 by considering a representation 
of the form 

M = XCMYT (6a) 

N = XCNYT (6b) 

where the calibration spectrum, N, may contain more than one 
chemical component. Equation 5 then generalizes to the gener­
alized eigenproblem 

NZ = MZA (7) 

where Z is now a matrix whose columns are eigenvectors and A 
is a diagonal matrix of eigenvalues. As in eq 5, the eigenvalues 
contain the concentration ratios: A = CNCM"', but even more 
powerful is the fact that Z is the pseudo-inverse of YT—the pure 
component responses in the column space (e.g., chromatographic 
elution profiles). This assertion can be quickly verified by noting 
that the solution to eq 7 is unique and substituting M = XCMYT, 
N = XCNYT, A = CNCM- 1 , and Z = (YT)+ into eq 7: 

(XCNYT)(YT)+ = (XCMYT)(YT)+(CNCM-') (8) 

Because CNCM~' is a diagonal matrix within the space of Y, it 
is unchanged by the projection matrix YT(YT)+, where + indicates 
the generalized inverse, so that eq 8 yields an identity. In practice, 
it is possible for some of the diagonal elements of CM to be zero, 
if the calibration sample (N) contains chemical components not 
present in the mixture sample (M), so that it may be necessary 
to replace M in eq 7 with M + N, so that A becomes C N ( C N + 
CM)"1. which does not have zero elements in the denominator.20 

Wilson and co-workers27 then noted that eq 7 can be solved by 
using the QZ algorithm if projection matrices are used to reduce 
M and N to square matrices. This method has the advantage that 
the diagonal elements of A are calculated in the form A^ = a,-//?;, 
where a, and /J,- are separately calculated scalar quantities, which 
eliminates the need to replace M with M + N when some of the 
ckM

 may be zero. Using the QZ algorithm is also computationally 
more robust and faster than the transformations proposed by 
Sanchez and Kowalski20 for solving eq 7. 

Given that Z = (YT)+, then the pure component responses in 
the other order X may be estimated as 

C N X = MZA (9) 

(24) Lorber, A. Anal. Chim. Ada 1984, 164, 293-297. 
(25) Lorber, A. Anal. Chem. 1985, 57, 2395-2397. 
(26) Lorber, A. Anal. Chem. 1986, 58, 1167-1172. 
(27) Wilson, B. E.; Sanchez, E.; Kowalski, B. R. J. Chemometrics, in press. 
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where C N and X denote estimated quantities. X may be isolated 
by normalizing the columns of MZA;_the resultant normalization 
factors are the diagonal elements of C N . The columns of X may 
then be checked against library spectra for the pure components 
as a check on the quality of the quantitation.17'18 Alternatively, 
if M and N both contain unidentified chemicaj components, the 
estimated spectra in X and elution profiles in Y = (Z+)T may be 
used for qualitative analysis. 

For a second-order nonbilinear instrument, the response matrix 
N,t for a pure component can be represented as 

L 

N* = £ P/S/t, + E = PSTT + E (10) 
/=i 

where L is the rank of N, the (p,,t,) are a set of vectors (possibly 
orthogonal) which span the column and row spaces, respectively, 
of N, the Si are scaling factors to normalize the p,,t/, and E is 
unmodelled experimental error. For real data, L is generally not 
known; a number of methods for estimating L exist,28"30 but the 
actual estimate of L is not critical for this application. 

Note that in the expansion of a pure component for bilinear 
data (eq 1), only one pair of vectors x* and yk exists, but in the 
nonbilinear expansion (eq 10), an infinite number of sets of p,,t, 
exist, each differing by a rotation matrix. Furthermore, the 
bilinear expansion contains chemically meaningful information; 
recall for the LC-UV case the xk and yk vectors were the pure 
component UV spectrum and elution profile, respectively. For 
the nonbilinear case, there may be chemically meaningful de­
compositions, but the most readily obtainable decompositions, such 
as the singular value decomposition, do not contain this sort of 
unambiguous chemical information.31,32 

To apply rank annihilation to nonbilinear data, consider utilizing 
a nonbilinear pure component response matrix N^ in eq 5. Because 
a nonbilinear Np has rank larger than one, eq 5 becomes formally 
the same as the GRAM formulation in eq 7: NpZ = MZA. The 
diagonal elements of A, A,,-, are again concentration ratio estimates, 
but there are two possibilities for the A17 that result: either (a) 
all the A1-, will be the same (in the absence of noise), in which case 
the eigenproblem is ill-posed for the eigenvectors, or (b) the Aw 

will be substantially different from each other, in which case the 
problem is to select the An which is the true concentration esti­
mate.25 In practice, we have observed case a only for mathematical 
additions of artificial spectra; for real data the overlap between 
the row and columns spaces of pure component response matrices 
and the presence of noise inevitably cause case b to be the result, 
as discussed below. Consequently, applying rank annihilation to 
nonbilinear data generates a series of concentration estimates and 
the problem is to choose which of these estimates, if any, yields 
the true concentration. 

To deal with the problem of multiple, possibly different A,,-, 
Lorber suggested two solutions:25 (a) average all of the concen­
tration estimates or (b) approximate a nonbilinear Np by a bilinear 
matrix Np = U1C1V1, where U1, ax, and V1 are the most significant 
terms in some decomposition of Np in the form of eq 10. An 
example of (b) would be to use the diad formed by the first row 
and column principal components of Np from the singular value 
decomposition. As will be demonstrated in the Results, neither 
of these methods is particularly satisfactory. 

A third method is now proposed for dealing with multiple 
concentration estimates, applicable only when the response ma­
trices contain only nonnegative elements, which is to use the 
smallest concentration estimate produced by solving the GRAM 
eigenproblem: NpZ = MZA. The rationale for this method is 
as follows. Consider an expansion of Np in the form of eq 10, Np 

= PSTT. Let U and V be a normalized basis set for the remaining 
response matrices so that N* = UUTN t = Nk\\

T VA = I...K, 

(28) Malinowski, E. R.; Howry, D. G. Factor Analysis in Chemistry; 
Wiley-Interscience: New York, 1980. 

(29) Wold, S. Technometrics 1978, 20, 397-405. 
(30) Eastment, H. T.; Krzanowski, W. J. Technometrics 1982, 24,11-11. 
(31) Mandel, J. Am. Stat. 1982, 36, 15-24. 
(32) Klema, V. C; Laub, A. J. IEEE Trans. Autom. Control 1980, AC-

25, 164-176. 

k ^ p. Suppose that for some p,,t(, where /' £ jl, ..., L], the 
following relationships hold: p, ^ UUTp, and t,- ^ TTTt„ meaning 
that p, and t, are not completely included in the space spanned 
by the remaining N*, and are therefore linearly independent of 
the columns of U and V, respectively. Another way of expressing 
this requirement is that if Mp is the response of a mixture con­
taining all of the components except the pth, then rank M must 
be larger than rank Mp; i.e., adding component p to the mixture 
must increase the rank of the response matrix. If rank M is greater 
than rank Mp, then Np is said to increase the rank of M. Then, 
if the diad formed by p,>M,'T >s rar>k annihilated against the mixture 
response matrix, by solving Mz = (p,s,t,T)zA, then the resultant 
concentration estimate will be correct, in the absence of noise. 
The proof of this statement is the proof for noniterative rank 
annihilation for bilinear data, as given by Lorber,24 because the 
assumptions above are equivalent to linear independence for 
bilinear pure components. 

Next, suppose instead that for all p,,t„;' E (1, •••, L), the above 
assumption does not hold; that is, p, = UUTp, or t, = VVTt(, 
meaning either p,- is not linearly independent of the columns of 
U or t, is not linearly independent of the columns of V. In this 
case, it can be shown that the estimated concentrations will be 
biased by an amount which depends on the amount of correlation 
between p, and U, between t, and V, and on s,—the relative 
contribution of p,t,T to Np. Futher, it can be shown that for 
absolute value mode 2D NMR and for MS/MS, for which the 
Nfc can be diagonalized to a positive frame of reference,33 then 
the concentration estimate will be larger than the true value. 

It is important to note that the above conclusions indicate that 
rank annihilation based methods will only be applicable to non­
bilinear systems when the rank of the response matrices is sub­
stantially less than the smaller of the number of rows and the 
number of columns. The reason for this is the requirement above 
that addition of Np must increase the rank of M. The maximum 
rank for a matrix is the minimum of the number of rows and 
columns, and if one or more components have a rank which is at 
or near the maximum, it will not be possible for additional com­
ponents to increase the rank of M, and the concentration estimates 
will necessarily be biased. 

In the event that the response matrices are at or near full rank 
for a particular instrument or system, it is still possible to use these 
data for multicomponent quantitative analysis by treating the 
response matrix as a very long vector and utilizing a first-order 
data calibration method such as Partial Least Squares regression.34 

The nonbilinear rank annihilation requirement that Np increase 
the rank of M is a stronger requirement than the linear inde­
pendence which is required for first-order calibration.21 Any 
second-order instrument can therefore always be treated as a 
first-order instrument, although any advantages for quantitation 
in the presence of unknown spectral interferents will necessarily 
be lost. 

Experimental Section 
All 2D NMR experiments were performed on a Bruker WM-500 

(Brucker Instruments) spectrometer operating at 500.13 MHz. Stock 
sugar solutions were prepared by dissolving known masses of the pure 
sugars (Sigma Chemicals, St. Louis, MO) in known masses of D2O 
(Cambridge Isotope Laboratories, Woburn, MA). Calibration samples 
were obtained by dilution by mass with D2O; mixture samples were 
obtained by mixing, and in some cases diluting, stock solutions by mass. 

Data analysis and simulations were performed on a MicroVAX II 
(Digital Equipment Corp., Maynard, MA), primarily using the Ctrl-C 
data analysis environment (Systems Control Technology, Palo Alto, CA) 
to implement the generalized rank annihilation algorithm, as described 
by Wilson and co-workers.27 

Results and Discussion 
In order to test the application of rank annihilation to non­

bilinear data in cases where sources of variation could be con-

(33) Wilson, B. E. Ph.D. Dissertation, University of Washington, Seattle, 
WA, 1988. 

(34) Wold, S.; Geladi, P.; Esbensen, K.; Ohman, J. J. Chemometrics 1987, 
1, 41-55. 
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Table I. Effect of Noise in Nonbilinear Rank Annihilation" 

noise, % 

0.00 
1.00 
2.50 
3.75 
5.00 
7.50 

10.00 
12.50 
15.00 
20.00 

mean 

0.5000 
0.4997 
0.4994 
0.4994 
0.4988 
0.4988 
0.4984 
0.4980 
0.4976 
0.4984 

std dev 

0.0000 
0.0004 
0.0007 
0.0011 
0.0014 
0.0026 
0.0034 
0.0031 
0.0037 
0.0058 

min 

0.5000 
0.4985 
0.4974 
0.4962 
0.4945 
0.4893 
0.4873 
0.4901 
0.4862 
0.4756 

max 

0.5000 
0.5002 
0.5007 
0.5011 
0.5006 
0.5019 
0.5030 
0.5047 
0.5032 
0.5059 

"Mean, standard deviation, minimum, and maximum of the con­
centration estimate from 30 repetitions at each of 10 levels of added 
noise for rank annihilation analysis of mathematical mixtures of con­
structed pure component spectra. The true concentration is 0.5000. 

trolled, sets of response matrices ("spectra") were constructed for 
hypothetical pure components using sine and cosine functions, and 
these spectra were mathematically added to generate mixture 
spectra. By construction, these spectra were diagonalizable to 
a positive frame of reference, so that rank annihilation could be 
used, with the concentration estimate taken from the smallest of 
the eigenvalues (the method proposed in the theory section). For 
these simulation experiments reported in this paper, none of the 
analytes had a unique signal channel, so that these simulation 
experiments are examples of quantitation problems involving 
completely overlapped, unknown spectral interferents. 

For the first set of experiments, each pure component response 
matrix was constructed from two diads, x1-j,-y1-

T, where each x( 

contained 60 elements and each y, contained 40, to generate a 
system with m = 60 rows and n = 40 columns. Initially, all four 
diads (two for each pure component) were constrained to be 
orthogonal, and rank annihilation was performed on each com­
ponent separately, in a manner formally equivalent to generalized 
rank annihilation: MZ1A1 = N1Zi and MZ2A2 = N2Z2, where 
N1 and N2 are the two pure component response matrices, M is 
a mixture response matrix generated from N1 and N2, and Z1, Z2, 
A1, and A2 are the corresponding eigenvector and eigenvalue 
matrices. The result of this analysis was the correct concentration 
estimate for the pure components, which is hardly surprising 
considering that all four diads were constrained to be orthogonal. 
The two diads in N1 behave as two independent bilinear pure 
components, each with the same concentration ratio between the 
mixture and the pure component. 

In order to test the effect of noise on this simple case, normally 
distributed random numbers with zero mean and a standard 
deviation equal to a percentage of the largest absolute value in 
the matrix were added to the mixture spectra, to simulate white 
noise (where the standard deviation of the noise is equal for all 
channels, as opposed to shot noise where the standard deviation 
increases with the square root of the signal intensity). Rank 
annihilation was performed as above on the mixture spectra 
containing added noise using the original pure components, and 
the analysis was repeated 30 times for each of 10 levels of added 
noise. In each experiment, the estimated concentration was taken 
as the smallest of the concentration estimates obtained; the results 
are given in Table I. As the amount of added noise was increased, 
the standard deviation of the estimated concentration increased, 
and the estimated concentrations began to be noticeably biased 
low. This bias is predictable based on Jenson's inequality,35 given 
that the estimate chosen is the smallest of the estimates obtained, 
and is a drawback of the proposed method of selecting a con­
centration estimate. One point to consider in Table I is that adding 
noise equal to 20% of the tallest peak in the mixture spectrum 
corresponds, in this system, to an average signal-to-noise ratio of 
approximately 2.5:1, where the average S/N is calculated as the 
average of the signal intensities, divided by the noise standard 
deviation. It is reasonable to consider the S/N calculated in this 

(35) Rao, C. R. Linear Statistical Inference and its Applications; Wiley: 
New York, 1973. 
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Figure 1. Effect of correlation on rank annihilation eigenvalues. The 
graph shows the effect of intercomponent collinearity on the largest 
eigenvalue from simulation experiments. The percentage of noise is the 
standard deviation of the added noise expressed as a percentage of the 
tallest peak in the mixture spectrum. 

fashion, because these mathematically constructed spectra do not 
contain any regions of base-line signal. Even with this extreme 
level of noise, the advantages of multichannel signal averaging 
give a mean concentration uncertainty of 2.3% if the uncertainty 
region is taken as ±2 standard deviations, and a worst case 
prediction error of 7% over 30 repetitions. 

To test the effect of collinearity between diads within a given 
pure component the orthogonality constraint for the two diads 
forming a pure component was relaxed, while still holding the other 
two diads to be orthogonal to each other and to the first two diads. 
The result of these experiments was that, in the absence of noise, 
two correct concentration estimates were obtained even when the 
diads were almost completely collinear, with a correlation of 0.99. 
When the correlation reached 1.0, Np became a rank one matrix, 
and only one significant eigenvalue was obtained, which yielded 
the true concentration ratio. 

To test the effect of collinearity between components, the or­
thogonality constraint for two diads, one in each component, was 
relaxed. This experiment was repeated for a number of different 
levels of added noise; the results are summarized in Figure 1. For 
all values of correlation between the two diads and of added noise 
to the mixture spectrum, the smallest concentration estimate 
remained at the true value, to within the limits of error, As the 
correlation between the diads approached 1.0, the larger estimated 
concentration rose sharply and leveled off at an elevated value 
relative to the true value. For this simple experiment, the ex­
pectation of the larger eigenvalue, E[c+], can be shown to be equal 
to 

E[c+] = C1 = -C1 (H) 

where M = C1N1 + C2N2, N1 = X1^y1
1 + x2j-2y2

T, N2 = X3J
1Jy3

1" 
+ X4^y4

1*, and x2y2
T and x4y4

T are the diads for which the or­
thogonality constraint was relaxed. 

Of particular importance in the results in Figure 1 is the fact 
that the larger eigenvalue does not increase gradually away from 
the true value, but rather remains at the true value and then breaks 
sharply upward. The break becomes less sharp with added noise 
and occurs at lower amounts of correlation, but nonetheless re­
mains sharp in comparison with the behavior which might be 
expected if the eigenvalue was linearly dependent on the amount 
of correlation. This result is important because for real data, the 
diads for a given pure component, in whatever basis set might be 
chosen, will not be completely orthogonal to the remaining com­
ponents. If the eigenvalues grew gradually away from the true 
value as the diads became even partially correlated, it would not 
be possible to apply rank annihilation to any real nonbilinear case. 

In the Theory section, it was demonstrated in eq 10 that it is 
possible, when using GRAM, to back estimate the X and Y 
matrices. Sanchez and co-workers18,19 noted in applying GRAM 
to LC-UV data that the correlation between the estimated UV 
spectra in X and library spectra of the pure components was 
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Table II. Concentration Estimates from GRAM-Based Analysis of 2D NMR Spectra of Sugar Solutions" 

true value 

true value 
concn 

estimates 

mean spectral 
residual X 10" 

concn error, % 

arabinose 

23.121 
20.643 
20.643 
24.160 
25.335 
35.638 

9.283 
11.11 

cellibiose 

11.397 
9.767 

12.942 
26.253 
37.192 
41.486 

7.099 
14.30 

analyte 

lactose 

39.103 
40.534 
46.994 

117.439 
165.920 
168.034 

2.453 
3.66 

melibiose 

17.800 
17.189 
19.098 
24.644 
32.308 
44.828 

2.799 
3.43 

sorbose 

3.671 
3.347 
3.347 
4.349 
5.271 
9.100 

2.379 
8.82 

xylose 

23.069 
24.264 
25.264 
30.351 
30.946 
39.571 

3.110 
5.18 

" For each of the six sugars, the true concnetration ratio cpM/cp^N is listed first, followed by the five smallest concentration estimates from rank 
annihilation of that sugar's pure component spectrum against a mixture containing all six sugars. All concentrations are in mg solution per mL D2O. 
The concentration error is based on using the smallest concentration estimate. 
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Table III. Concentration Estimates for Noniterative Rank 
Annihilation Using the First Principal Component Diad from the 
Calibration Spectrum" 

spectral residual 

Figure 2. Correlation between spectral and concentration residuals. The 
spectral residuajs are the average of the absolute values of the elements 
of the matrix Np - Np, divided by the average absolute value of the 
elements of Np for scale. The concentration residuals are the difference 
between the estimated concentration and the true concentration, divided 
by the true concentration for scale. 

indicative of the accuracy of the concentration. That is, inaccurate 
concentration estimates generally occurred at^the same time as 
poor correlations of the estimated spectra in X with the library 
UV spectra of the pure components taken using the same LC-UV 
equipment and solvents. Furthermore, Sanchez36 demonstrated 
a closed form connection between the errors in the estimated 
spectra and the errors in the predicted concentration for a m = 
2 rows by n = 2 columns case. In the nonbilinear case, the X and 
Y matrices are replaced by P and T, which do not themselves 
contain unambiguous chemical information. However, estimates 
for P, T, and S,, can be obtained as 

f = (Z+)7 and PS, = MZA (12) 

so that Np = (Z+)1MZA. By comparing Np with Np an estimate 
of the maximum error in the concentration estimate cp can be 
obtained. This correlation is demonstrated in Figure 2, which 
shows a scatter plot of the concentration residual versus the average 
absolute residual of N - N7, for a total of 300 experiments applying 
rank annihilation to mathematical mixtures of the constructed 
pure component spectra. As the average spectral residual in­
creases, the deviations of the concentration estimates about the 
true value also increase, in an approximately linear fashion. 

To test the applicability of the results thus far obtained on more 
complicated systems, the experiments relaxing orthogonality 
constraints were also performed on the following four systems: 
three components, each of rank two; two components, each of rank 
three; three components, each of rank three; and three components, 
each of rank five. As above, there were m = 60 rows and n = 
40 columns. Various experiments were performed to study the 
effects of inter- and intracomponent collinearity, both separately 
and together. In all cases, the results were consistent with those 
achieved above, indicating that (a) intracomponent collinearity 
causes some of the eigenvalues to become undefined by reducing 

true value 
est value 

arabinose 

23.12 
32.65 

cellibiose 

11.40 
15.20 

analyte 

lactose melibiose 

39.10 19.20 
45.84 21.75 

sorbose 

3.67 
6.26 

xylose 

23.07 
45.66 

0 For each of the six sugars, the true concentration ratio is listed 
first, followed by the concentration estimate which results from using 
the first principal component diad from the singular value decomposi­
tion of the pure component spectrum and applying noniterative rank 
annihilation as per eq 5. All concentrations are in mg solute per mL 
D2O. 

the dimensionality of the problem; (b) high intercomponent 
collinearity causes the relevant concentration estimates to be 
biased; (c) the sign of the intercomponent collinearity bias ( c ^ ^ 
- c,rue) is positive if the spectra are diagonalizable to a positive 
frame of reference; (d) random noise causes the distribution of 
concentration estimates (over a series of experiments) to be skewed 
negative relative to the true concentration (a consequence of 
choosing the smallest eigenvalue as the concentration estimate); 
and (e) so long as Np increases the rank of M, the effects of (a)-(d) 
on the smallest eigenvalue are not synergistic. 

Based on these results, rank annihilation as above was then 
applied to 2D proton /-correlated magnitude NMR spectra 
(COSY) of six sugars in D2O: arabinose, cellibiose, lactose, 
melibiose, sorbose, and xylose, and a mixture containing all six 
sugars. These spectra were stored as 256 by 256 matrices with 
estimated ranks of 3 (cellibiose), 6 (sorbose), 7 (arabinose and 
lactose), 8 (melibiose), and 12 (xylose). The results of this analysis 
are summarized in Table II. Note that while the errors in the 
predicted concentration are larger than might be expected based 
on the simulated data, this analysis of real data is nonetheless an 
example of quantitation for an analyte of interest in the presence 
of five unknown spectral interferents. The calibration for each 
analyte was performed separately, using only that analyte's pure 
component spectrum as the Np matrix. In addition, as shown in 
Table II, those analytes with larger concentration error tend also 
to have larger average spectral residuals. 

The larger than expected errors in the concentration estimates 
are interpreted to be primarily a consequence of T1 noise and the 
fact that this noise was eliminated by symmetrization.37 For a 
given spectrum, R, the procedure employed for removing T, noise 
was to set the elements Ry and Rjt both equal to the smaller of 
their original values. This procedure, while better than leaving 
the T1 noise in the spectra, causes sufficient systematic differences 
between the mixture and calibration spectra to account for much 
of the observed prediction error. Furthermore, there were par­
ticular problems quantitating for the two analytes with the greatest 
prediction error, arabinose and cellibiose, as discussed below. 

In applying rank annihilation to the NMR data, it was necessary 
to zero out the portion of the spectrum corresponding to the 

(36) Sanchez, E. Ph.D. Dissertation, University of Washington, Seattle, 
WA, 1987. 

(37) Mehlkopf, A. F.; Korbee, D.; Tiggelman, T. A. J. Magn. Resort. 1984, 
58, 315-323. 
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Figure 3. Arabinose calibration spectrum: absolute value mode plot of 
COSY spectrum of arabinose. 

V 
J-*V 

Figure 4. Residual matrix from arabinose calibration: calibration 
spectrum (Np) minus estimated spectrum (Np) for arabinose. Note the 
large systematic deviation near d = 4.7 ppm. 

presence of partially protonated water, HOD. This fact was 
noticed after applying rank annihilation to the data without any 
such pretreatment and comparing the estimated calibration matrix 
Np with the true calibration matrix for each of the six components. 
The quantitation for lactose, melibiose, sorbose, and xylose 
presented no unexpected difficulties, but the Np estimate for 
arabinose (Figure 4) and cellibiose exhibited systematic differences 
from the calibration spectra (Figure 3), much like a peak was 
missing from the estimated spectra at 8 = 4.7 ppm along the 
diagonal. We interpret this missing peak as being due to residual 
HOD in the samples; other 2D NMR spectra we have obtained 
indicate that the residual HOD peak in arabinose and cellibiose 
can occur at a chemical shift different from that in the remaining 
four sugars and in the mixture spectrum. The differences in 
chemical shift were on the order of 0.1 ppm, and so a region from 
5 = 4.2 ppm to S = 4.8 ppm and 0.05 ppm wide along the diagonal 
was zeroed out for the analysis. The results in Table II were 
obtained after this region of the spectrum was suppressed. In­
terestingly, the errors in the estimated concentrations for the other 
four sugars (lactose, melibiose, sorbose, and xylose) decreased from 
an average of approximately 10% to an average of approximately 
5%. We interpret this as signifying that the quantitation for these 
components was also affected by residual HOD, although not to 
the same degree as arabinose and cellibiose, possibly because of 
the large number of other peaks along the diagonal in the region 
of <5 = 4.7 ppm. 

When the HOD peak moves, the principal components of the 
arabinose and cellibiose spectra which correspond to the HOD 
peak do not lie in the space spanned by the mixture spectrum, 
nor do they lie in the space spanned by Np + M, which is used 
to form the basis for the projection.27 Consequently, none of the 
variance structure associated with these principal components was 
retained when the mixture and calibration spectra were projected 
into P-T coordinate space, and so no such variance structure could 
be present in N, which explains the absence of the HOD peaks 
from these estimates. The estimated concentrations for arabinose 

and cellibiose were substantially smaller than the true values 
because the effective concentration of the arabinose and cellibiose 
residual HOD peaks in the mixture spectrum is zero; they simply 
are not present in the mixture. The same type of behavior would 
be expected if the analyte of interest was not present in the mixture 
sample, except that the estimated calibration spectrum would 
exhibit more serious deviations from the true spectrum. 

In essence, the problem with the shift in the HOD peak is 
indicative of a potential drawback to the application of rank 
annihilation to nonbilinear data, which is that quantitation will 
be biased when matrix effects are present, an inherent difficulty 
when calibrating with pure component spectra. 

As was mentioned in the Theory section, two other methods 
have been proposed, but not previously tested, for applying rank 
annihilation to nonbilinear data:25 (a) averaging the resultant 
concentrationestimates, and (b) approximating a nonbilinear Np 

by a bilinear Np constructed, for example, from the first row and 
column principal components of the singular value decomposition 
of Np. It is clear from the data presented in Table II that method 
a will not yield a satisfactory concentration estimate. The first 
problem that would have to be addressed is the number of con­
centration estimates to average. Table II only gives the five 
smallest estimates; for each of the sugars there are easily another 
ten concentration estimates that would have to be considered, all 
of which are larger than those given in Table II. As for method 
b, Table III gives the results when the singular value decomposition 
of Np is calculated, and a diad formed from the first row and 
column principal components is used for rank annihilation on the 
same data as was used for Table II, as per eq 5. In this analysis, 
the same diagonal region in the spectra was zeroed out as in the 
Table II analysis, despite the fact that using only the first principal 
component gives no diagnostic information by which a problem 
such as the HOD peak shifts could be detected. With this ad­
vantage, method b gives some correlation with the true concen­
tration values, although not as good as the data in Table II. 
Analysis using the first terms from a PLS-type decomposition27 

of Np was also attempted, but the results were not significantly 
different from that obtained via the SVD. As a further test, the 
pure component spectra were mathematically added together to 
give an ideal case mixture spectrum, with concentration values 
equal to those in the real mixture. The GRAM-based analysis 
used in Table II gave the concentration estimates equal to the true 
values to within the limits of machine precision, but method b 
failed to give the exact answers for five of the sugars, instead 
yielding concentration estimates off by as much as 4%. The failure 
of method b to correctly solve such an ideal case is seen as con­
clusive evidence of its inappropriateness for applying rank an­
nihilation to nonbilinear data, particularly since it can be shown 
that there are no circumstances under which method b would 
succeed and the GRAM-based analysis would fail to correctly 
estimate the concentrations, assuming that appropriate attention 
is paid to the Np estimate as a diagnostic tool. 

Given two of the methods proposed for selecting the best 
concentration estimate from GRAM-based analysis of nonbilinear 
data, (a) approximating Np by the first principal component diad 
and (b) selecting the smallest of the eigenvalues from using 
GRAM and the full Np, an additional method warrants consid­
eration: (c) selecting the smallest concentration estimate from 
using successive principal component diads to approximate Np. 
While method c would generate the correct concentration estimates 
under the same circumstances as method b, it has the disadvan­
tages of being computationally more intensive and of not gen­
erating the diagnostic estimate Np. 

In conclusion, it has been shown that it is possible to apply rank 
annihilation to nonbilinear data, generating an eigenproblem 
formally the same as the generalized rank annihilation method. 
The requirements for nonbilinear rank annihilation are that (a) 
the pure component second-order spectra must be available, (b) 
no serious matrix effects or similar nonlinearities in response can 
be present, (c) the spectra must be nonnegative, and (d) the 
responses for the analytes of interest must increase the rank of 
the mixture response matrix. Further, when using rank annihi-
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lation as per eq 7, one obtains a back estimate, Np, of the pure 
component spectrum, Np. Systematic differences between Np and 
Np are indicative of matrix effects and other violations of condition 
b above, while random differences between the two matrices are 
indicative of the accuracy of the concentration estimate. Using 
rank annihilation and nonbilinear second-order data, it is then 
possible to quantitate for an analyte of interest even in the presence 
of unknown spectral interferents. 
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Abstract: DEWAR-PI molecular orbital calculations are reported for 14 nonalternant polycyclic aromatic hydrocarbon derivatives 
of fluoranthene and for the Wheland intermediates (arenium ions) to study electrophilic substitution at all the methine groups 
in them. Calculations were also carried out for related alternant aromatic hydrocarbons. The species studied were indeno-
[1,2,3-Ai']chrysene (1), benz[rfe/]indeno[ 1,2,3-hi]chrysene (2), fluoreno[3,2,l,9-rfe/g]chrysene (3), benz[a]aceanthrylene (4), 
benz[e]acephenanthrylene (5), indeno[l,2,3-crf]pyrene (6), fluoreno[9,l,2,3-crfe/]chrysene (7), benz[rfe/]indeno[l,2,3-<j/-]chrysene 
(8), dibenz[a,e]aceanthrylene (9), dibenz[aj]aceanthrylene (10), dibenz[e,fc]acephenanthrylene (11), dibenz[a,/]aceanthrylene 
(12), and benzo[fc]fluoranthene (13), benzo[y]fluoranthene (14), fluoranthene (15), phenanthrene (16), pyrene (17), chrysene 
(18), benzo[def\chrysene (19), benz[a]anthracene (20), anthracene (21), and naphthalene (22). 

Interest in higher polyaromatic hydrocarbon derivatives of 
fluoranthene stems from their widespread prevalence as envi­
ronmental pollutants. Some of these hydrocarbons can be mu­
tagenic and/or carcinogenic, stimulating cancer research as well 
as synthetic work. Surprisingly little is known about the chemistry 
of these polycyclic fluoranthenes or their patterns of electrophilic 
substitution. Because they are nonalternant hydrocarbons, simple 
theoretical arguments describing substitution do not exist. 

The majority of aromatic electrophilic substitutions occur by 
the arenium ion mechanism as depicted in Scheme I. The 
electrophile attacks in the first step, generating a positively charged 
intermediate (the so-called arenium ion or Wheland intermediate), 
and the leaving group departs in the second step. For the hy­
drocarbons studied, the leaving group is always hydrogen, and 
the results discussed in this paper are valid only for electrophiles 
that follow this type of mechanism. 

The rate-determining step is almost always the formation of 
the Wheland intermediate (WI). Species of this kind are well-
known, e.g., the species formed by protonation of aromatic hy­
drocarbons by strong acids. It can be shown by PMO theory1 

that the activation energy (E1) for substitution at a given site in 
an even alternant hydrocarbon (AH) is proportional to the heat 
of reaction (Ai/Rx) for the formation of the corresponding WI: 

£ a = AAHRx (D 
where A is a constant. Thus the difference (A£ X Y) m activation 
energies for substitution at different positions (X and Y) is pro­
portional to the difference in energies of their respective Wis (£ x 

and EY): 

A£XY = E1(X) - £.(Y) = B(Ex - Ey) (2) 

where B is another constant. Thus the quantities of A£XY should 
serve as a measure of the relative reactivities of various positions 
to electrophilic substitution. In order to predict the favored point 

(1) (a) Dewar, M. J. S. J. Am. Chem. Soc. 1952, 74, 3341, 3345, 3350, 
3353, 3355, 3357. (b) Dewar, M. J. S.; Dougherty, R. C. The PMO Theory 
of Organic Chemistry; Plenum: New York, 1975. 
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of attack in a given aromatic compound, the energies of the Wis 
have to be evaluated for all possible positions, 14 in the case of 
indeno[l,2,3-/i/]chrysene (1). 

Calculations of this kind for the compounds of interest here 
by even the simplest ab initio procedures would require an un­
reasonable amount of computer time. Indeed, the use of even 
all-valence-electron semiempirical methods would be very ex­
pensive. These difficulties can be avoided by using a ir-SCF 
treatment2 that was developed here some years ago, based on the 
Pople3 method together with the Pariser-Parr4 procedure for 
allowing for electron correlation. This Pariser-Parr-Pople (PPP) 
approach, as it is commonly termed, was originally developed for 
studies of light absorption. Our group was able to show that it 
could be parametrized to reproduce ground-state properties of 
conjugated molecules very effectively,2,5 heats of formation of 
conjugated and aromatic hydrocarbons being reproduced to within 
the limits of error of the best thermochemical measurements. 
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